Sharp upper diameter bounds for compact shrinking Ricci solitons

نویسندگان

چکیده

We give a sharp upper diameter bound for compact shrinking Ricci soliton in terms of its scalar curvature integral and the Perelman’s entropy functional. The cases could occur at round spheres. proof mainly relies on logarithmic Sobolev inequality gradient solitons Vitali-type covering argument.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of compact shrinking Ricci solitons

Einstein manifolds are trivial examples of gradient Ricci solitons with constant potential function and thus they are called trivial Ricci solitons. In this paper, we prove two characterizations of compact shrinking trivial Ricci solitons. M.S.C. 2010: 53C25.

متن کامل

Degeneration of Shrinking Ricci Solitons

Let (Y, d) be a Gromov-Hausdorff limit of closed shrinking Ricci solitons with uniformly upper bounded diameter and lower bounded volume. We prove that off a closed subset of codimension at least 2, Y is a smooth manifold satisfying a shrinking Ricci soliton equation.

متن کامل

On Complete Gradient Shrinking Ricci Solitons

In this paper we derive a precise estimate on the growth of potential functions of complete noncompact shrinking solitons. Based on this, we prove that a complete noncompact gradient shrinking Ricci soliton has at most Euclidean volume growth. The latter result can be viewed as an analog of the well-known theorem of Bishop that a complete noncompact Riemannian manifold with nonnegative Ricci cu...

متن کامل

Geometry of Complete Gradient Shrinking Ricci Solitons

The notion of Ricci solitons was introduced by Hamilton [24] in mid 1980s. They are natural generalizations of Einstein metrics. Ricci solitons also correspond to self-similar solutions of Hamilton’s Ricci flow [22], and often arise as limits of dilations of singularities in the Ricci flow. In this paper, we will focus our attention on complete gradient shrinking Ricci solitons and survey some ...

متن کامل

Convergence of compact Ricci solitons

We show that sequences of compact gradient Ricci solitons converge to complete orbifold gradient solitons, assuming constraints on volume, the L-norm of curvature, and the auxiliary constant C1. The strongest results are in dimension 4, where L 2 curvature bounds are equivalent to upper bounds on the Euler number. We obtain necessary and sufficient conditions for limits to be compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2021

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-021-09764-7